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NOMENCLATURE, SYMBOLS, AND ASSORTED MARKS

rectangular Cartesian coordinates

general curvilinear coordinates

general coordinates on middle surface of undeformed
shell

coordinate normal to middle surface of undeformed shell

polar parameters on middle surface of undeformed shell

cartesian parameters on middle surface of undeformed
shell

radius of revolution of middle surface of undeformed
paraboloid

angular coordinate of middle surface of undeformed
paraboloid

slope of meridian tangent to middle surface of
paraboloid

angle which meridianal tangent makes with tangent plane
to apex of paraboloid (see figure 2.1.3)

focal length of middle surface of paraboloid

radius vector to point on middle surface of undeformed
shell

radius vector to point in undeformed shell
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radius vector to point on middle surface of deformed
shell

radius vector to point in deformed shell

covariant base vectors of middle surface of undeformed
shell

contravariant base vectors of middle surface of un-
deformed shell

unit normal to middle surface of undeformed shell

covariant base vectors of undeformed body

contravariant base vectors of undeformed body

covariant metric tensor of undeformed body

contravariant metric tensor of undeformed body

covariant metric tensor of middle surface of undeformed
shell

contravariant metric tensor of middle surface of
undeformed shell

covariant base vectors of deformed body

contravariant base vectors of deformed body

covariant base vectors of deformed middle surface of
shell
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1 2 [} 2
b’,bz, bz’ b1
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™" Omn, o0
g4
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contravariant base vectors of deformed middle surface
of shell

unit normal vector to deformed middle surface

principal radil of curvature of middle surface of
undeformed shell

second fundamental quadratic covariant tensor of
undeformed middle surface of shell

second fundamental quadratic mixed tensor of undeformed
middle surface of shell

strain tensors

stress tensors

stress resultant tensor of shell
moment resultant tensor of shell
transverse shear resultant tensor of shell

physical components of force resultants tensors referred
to 8", 8§ coordinate system (units of force per unit
length)

physical components of moment resultants tensors %', %%
coordinate system (units of force-length per unit length)

1
physical components of transverse shear tensor &, Ez co-
ordinate system (units of force per unit length)

unit base vectors assoclated with y', yz ’ y’

iii



covariant permutation surface tensor
contravariant permutation surface tensor

force-resultants referred tor, § coordinate system
(units of force per unit length)

moment-resultants referred to r,d coordinate system
(units of force-length per unit length)

transverse shear resultant referred to r, § coordinate
system (units of force per unit length)

focal length of parabola

powers of f, the focal length
displacement tensors of middle surface
rotation tensors of middle surface

displacement of middle surface along £ (units of
length)

displacement of middle surface along tangent to meridian
(units of length)

displacement of middle surface along tangent to latitude
(units of length)

strain tensor of middle surface

strain-curvature tensor of middle surface

iv
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v

Ao

extensional strain along meridian (dimensionless)

oxtensional strain along latitude (dimensionless)

shear strain (dimensionless)

extensional strain of middle surface along meridian
(dimensionless)

extensional strain of middle surface along latitude
(dimensionless)

shear strain of middle surface (dimensionless)

extensional strain-curvaturelof middle surface along
meridian (units of (length)™")

extensional straln-curvature of middle surface along
latitude ( wunits (length) =1 )

shear strain-curvature of middle surface (units of
(length) =1 )

thickness of undeformed shell (units of length)
Youngs modulus (units of force per unit area)
shear modulus (units of force per unit area)
Poissons ratio (dimensionless)

welght-density (units of force per unit volume)
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powers of v , Poissons ratio

coordinate normal to middle surface of deformed shell
thickness of deformed shell (units of length)
force-resultant vectors (units of force per unit length)

moment-resultant vectors (units of force-length per
unit length)

tensor components of body force vector
body force vector (units of force per unit area)

physical components of body force vector (units of
force per unit area)

force-resultants referred to cartesian parameters
(units of force per unit length)

- moment resultants referred to cartesian parameters

(units of force-length per unit length)

transverse shear resultant referred to cartesian
parameters (units of force per unit length)

bounding latitudes of paraboloidal shell
signifies quantity under bar is a vector

vertical slash before subscript signifies covariant
differentiation with respect to metric of deformed body
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comma before subscript signifies covariant differen-
tiation with respect to metric of undeformed body

Christoffel symbols of second kind of undeformed body

Christoffel symbols of second kind of the middle surface
of undeformed body

Christoffel symbols of second kind of deformed body

Christoffel symbols of second kind of the middle surface
of deformed body

dot between two vectors signifies scalar product

cross between two vectors signifies vector product

second fundamental tensors of deformed middle surface

second fundamental tensors of undeformed middle surface



I Introduction

The quest for more and more precise radars in the ultra-
high frequency regime has imposed very stringent requirements on the
structural behavior of large antennae. Thus, the permissible devia-
tions for an antenne surface which is to operate at 10,000 m.c. from
& true persboloidal surface of revolution is now felt to be 1/16 of
the wavelength, which is 3/16 of & centimeter or .OT4 inches. Such
& miniscule tolerance on the distortion of a structure which is a
hundred feet or more in overall size, and furthermore, which is to
assume different orientations with respect to the axis of gravity,
requires an extremely high degree of sophistication in analysis,
design, and construction.

The usual structures such as bridges, buildings, or even
flight vehicles are designed mainly by strength considerations, al-
though flight vehicles must also have a certain minimum stiffness in
order to avoid aeroelastic difficulties. Machine tools are required
to possess great stiffness, but machine tools are generally compact
and weight limitations are practically non-existent. On the other
hand, the primary design requirement of a high performance antenna
is that the reflecting surface remain parasboloidal and, in the case
of an antenna which is housed in a radome, strength considerations
play & minor role in the design. Thus, the antenna must have great
structural stiffness but since the main loads are its own dead
weight, the structural stiffness must be accompanied by minimum
weight, i.e., the antenna must possess & large ratio of structurel
stiffness to weight.

The basic structural components of the antenna&re para-

boloidal surface panels which, when joined together, form a surface

1.1



of revolution, Such a structural configuration is generally called
a "shell" although "“surface structure" may be more appropriate. Our
objective in this report is to treat in an exhaustive fashion the
distortions and stresses in paraboloidal surface structures. We
must, in view of the aforementioned stringent tolerances on the main-
tenance of the proper shape, investigate effects which generally

can be ignored in the more common-place structural theory. The
approach, in this report, will be to first lay the foundation for
the general behavior of a paraboloidal shell. Then the equations
will be specialized and simplified to the various forms of shell
behavior which are classified as membrane behavior, etc. This
report, which in a certain sense will never be completed, will

be issued in sections since it is felt the best interests of the
Lincoln Laboratory will be served in this manner rather than to
delay publication until, say, 90% is completed.

In view of our desire to lay a general foundation, and to
treat in an exhaustive fashion the behavior of paraboloidal surface
structures, the authors feel that the pertinent eaquations and the
geometry of the deformed structure can best be handled by the tensor
calculus. In the more simple aspects such as membrane behavior
with orthogonal shell coordinates, the advantages of the tensor
calculus are minor and its use may even seem like the use of the
theory of relativity to prove that a pitched baseball can curve.
However, the power of the tensor calculus will become apparent as

the more complex forms of surface structure behavior are considered.



2.1 GBOMETRY OF THE MIDDLE SURFACE: POLAR PARAMETERS
The middle surface of the paraboloidal shell of revolution
is a surface which is generated by revolving the parabola
3. (r)*
Yy ° a3t 2.1.1
about the ’3 axis (see figure 2;l1.1)

Y3

r
f———————————»|

PARABOLA p
y3
—e +yly2 PLANE

Figure 2.1.1

In this figure, r 1is the radius of revolution to a point p on the
middle surface and f 4is the focal length of the parabola.

We will use ¥, to denote the position vector from the
origin of the rectangular cartesian axes to a point p on the surface

of revolution (see figure 2.1.2). In terms of its rectangular components,

2.1



¥, iswritten as
( X
= T . T r)- -
ro(r,O) S Fcos@L, + ¥sin 9.4,2 + —4—-{-:—-.4,3

2.1.,2

where the .4'," are the unit vectors associated with the rectangular

cartesian coordinates cj", and 8 1is the angular coordinate measured

in the 9',2' plane from the y' axis.
y3

A

PARABOLOID OF
REVOLUTION

Figure 2.1.2

It is convenient at this stage to introduce a non-

dimensional coordinate in place of r. Let

2.2



2%
2.1.3
dg3
It should be recognized that Y is the slope I of the paraboloid

and also that if 4’ is the angle to the tangent (see figure 2.1.3) then

sin ¢ = . — ) 2.1.k
Vi+(y)?*
[
s v —m———— 2.1.5
¢ Jir(p*
tan g =y 2.1.6
F:z&{ 0504 +ysinbl, r (r)"L . 2.1.7
0 r R 2T =3 -1
In this notation, the base vectors of the middle surface
(see figure 2.1.3) are
E'-jjhslf cos 0L, +sin 6L, +y i
1 Ty “TSIn G, Ty 3} ? 2.1.8
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a. 3 aF" = - N . 3
a.z- V 2‘{ VSln 9.4.1+Y(‘.050,L2} ™ 2.1.9

y?

PLANE

(b}

(a)

(c)

Figure 2.1.3
We summarize without detailed comment the pertinent
geometrical parameters of the paraboloid.

The fundamental metric tensor

Gug® Oy s Op 2.1.10

2.L



has the components

4®* D+ 0

a % 2 2
[ o 0 4 (£)™(¥) 2.1.11
and the determinant,d., of the matrix[o.& /5] is
4 2 2
a=1E)* (N 1+ (], 2.1.12
Since a.n_-o the coordinate curves are orthogonal.
The unit normal , i, to the surface
he t=a,xa, 2.1.13
V a
has the components
= Y n b4 . 3 ) -
NE - e €050 h -~ == SINO L+ ———— &
irp* 1yt (p* N TTCI L A,
or in an alternative form,
Re-sing cos@i-singsinfi,tcosdl, . o1
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Note that the unit normal is directed inwardly (see figure 2.1.3).

We will need the derivatives of the base vectors.

da = 251 2.1.15
oY 3
dd ¥ - -
Qn' - 34'2 = Z‘F {— sin 9.‘.; f 605 94&/ } ) 2.1.16
29 dy ! 2
da - . -
1 $ — :
Y s 2f {- Y cos 94,| Y $in 9.4,1} o 2.1.17

The second fundamental tensor of the paraboloidal

surface,

_da,
d‘: N e a¥‘ 2.1.18
has the components
- [ _af
b - 4[ 1+ (y)? o ; 2.1.19a
(e} ) 25 ()2
i Y1+ *
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, 2€ cos ¢ o
[Ldﬂ] = © 24¥sin ¢ 2.1.1%b
Since both a.”_and blx are zero, the coordinate curves y and 8 are
the lines of curvature of the paraboloidal surface of revolution.
The contravariant metric tensor which is defined by
ot

o
0 Ay * 3)« 2.1.20

has the components

1" |

a = a_): = | s 7 ) 2.1.2]1

o ey 41+ (p?]
7 a'l?. .
Q - T 3 0 N 2.1.2?

22 I
a”“e &N, x | . 2.1.23
a  Qy 12 (N2
The results shown as L , 0 ,and are a consequence of the

" Q22
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orthogonality of the coordinate curves.

We will also have occasion to use the contravariant base

vectors. These are

- 18 = | -

a = a 7 Qa CL, 76,"' @, ’ 2.1.2
- 22 - -

a? ’6 =q?a 1 a 2.1.25

2 d-zg 2.

The normal curvatures in the directions of the co-
ordinate curves are also the principal normal curvatures because the
coordinates are the lines of curvature, We will use R1 and Rl to

denote the principal radii of curvature.

< @, . 24 3
R, » a6t [1+(NN ]2 2.1.26
R, = “23 . afd ()2 . 2.1.27
bay

With reference to the principal radii of curvature, we

2.8



can make the geometrical constructions shown in figure 2.1.l.

y® y>
] A
\
Q
dé
ds,
Figure 2.1.l
We observe that the altitude of the triangle ABP is
AB = Af cot ¢ * (24‘—3») (-L)= 2¢ 2.1.28
4
and the hypotenuse then can be expressed as
i 1
x 2 2
BP - [(Ap)" + (AB) |* = 2f [14(7]* 2.1.29

which means that the length Bp is equal to the normal radius of

curvature in the 8 direction, i.e.,

2.9



- L]
BP =R, 2.1,30
Additionally, the arc length ds, , along the Y coordinate

direction is given by

}
212
ds, = fa dy = 24 [1 +(Y) ] dy 2.1.31
and therefore, R g » the radius of curvature is also

Rl’ _JJ?..

We also observe that the arc length, ds1 , can be re-~

2.1.32

lated to + and the normal radius of curvature 21 ,

d$1 g R‘ d ¢ 2.1.33
or
R 451 2.1.34
- . . L]
1 d(f

Next we will 1ist the Christoffel symbols of the second

kind for the paraboloidal surface. These are given by

2,10



d} . 6,0( , day
dr ; S—E—F 2.1.35

where the subscript zero on the Christoffel symbols refers to the
undeformed middle surface.
For the present case, the non-zero Christoffel symbols

are as follows:

= 2 K 2.1.36
UBR 1+(y)
2 1
i F — 2.1.37
0 ¥
= - ¢ 2.1.38
22), 1+(y) %
The following ones are identically zero
22 = 0, 2.1.39
1 = O 9 2.1.l|0
12

2.11



{ﬁ} =0. 2.1.41

To complete the picture of the middle surface we require
the derivatives of the normal vector and the base vectors. The deriva-

tives of the normal vector are the Weingarten formulae,

3 _qf¥

e by 95 2.1.12

and for the paraboloidal surface these become

I L T a,

& R 2¢[14()2]72 2243
T IO | S

28 Ry 2 2¢[1+(0)2]2 2.1.h

The derivatives of the base vectors are given by the

Gauss formulae

da - -
= =z bag n + {:ﬂ} as 2.1.k5

2.12



and for the paraboloidal surface these become

30, ] - 2¢ -
= a4 + ————— n
3 1z ! [n—(zr)z]"z ’ 2.1.16
da, = 33, | a
36 'Y y 27
2l]lh7
3d, 2f (1?2 -
30 T T H(g)2 a + [4+(a)z]'/z n-
2.1.48

2.13



2.2 OBOMETRY OF THE MIDDLE SURFACE: CARTESIAN PARAMETERS

In section 2.1, the geometry of the middle surface has
been described by means of polar parameters, r and & . These nay
even be considered as a "natural" choice since the polar parameters
lead to coordinate curves which are also the lines of curvature, There
is another choice, which at first glance seems highly "un-natural", which
is motivated by the symmetries of the loading experienced by a parabolic
antenna. If the predominant loading is attributed to gravity, then it

is clear there exists an axis of symmetry and an axis of anti-symmetry.

v
Ar y 2
2 v ¥3
1
1 1
v 2
GRAVITY 2 1

Figure 2.2.1
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There is shown in figure 2,2.1 a parabolic reflector with its focal
axis inclined at an angle V to the gravity axis. The behavior of the
antenna shell structure due to the gravity loading is seen to be
gymmetric with respect to axis 2-2 and anti-gymmetric with respect to
axis 1-1,

The so-called "natural" coordinates r and @, which
are best suited for problems with rotational symmetry,may not be able
to conveniently take advantage of the symmetries of construction which
may be motivated by gravity loading. For example, it may be advan~
tageous to reinforce the shell with members which are parallel to the
2-2 axis. Accordingly, it is felt that the use of cartesian parameters
may be fruitful. These are defined as follows (cf. equation 2.1.1 and
figure 2,2.2):

yl=2¢x , 2.2.1

"7'3 2&\’ ’ 2.2.2

\’3 - f [(x)2+ (q)l] . 2.2.3

2.15



It should be observed that x and y are non-dimensional parameters on the

surface.

% X CONSTANT
Y= CONSTANT
/r’
/ \\
/[ \
& >y
\ /
N J/

~_1 7 .

PLANE
Figure 2.2,2

The position vector to points on the middle surface is

now written as

v, (x,y) > ).-in‘ + 1f.’12+ {‘[(x)2+(y)z] i, . 2.2.4

2,16



We summarize without comment the base vectors, first fundamental tensor,

second fundamental tensor, and Christoffel symbols of the second kind.

a, = 24L, + 24xiy 2.2.5
@, = 24i,+ 2§ydy 2.2.6
oy = 4% (144%) 2,2.7
Qg * 44% Xy 9 2.2.8
a.zz=4fz(1+g7') ’ 2.2.9

2

a = lbf4(1+x +\’z) ’ 2.2.10

- 2+ _,.2 3 27
n - ——[-44'- X4, 9¢ \14,1+ 44 &3],

1
'

2.2.11
25
by,*+ —E—— , 2.2.12
U s
2.,2.13
b <0 s
4
b,, » —/—— , 2.2,
22 Jl'rxzh,z
2
n, - ng = 2.2.15
4f (l*x ty )

2,17



12, _ ’ .
482 (14 x +y?)
2
22 1+x
2 1, % ' 2.2.17
4“ (|+X «}“ )
4
! 1bf X
: ; 2.2.19
e et
]
4 X
l'}= wit o x .
4310 o 1+x +y
{ 2 } . lbf4 ) y ’ "
g a7 l+x7'+\j’“
4
{2] ] " 9= : 2 ! 2.2.21
"o @ T+x7+y

{LL‘{&L={EL‘{;L=o, 2.2

2.18



| H'(‘t)z

Vb * - .
! Zf[l+x2+x’7“]%' ! 2.2.23
by * ~ 2,22l
LY ey R 2
l’?' x\zg 213, ! 2.2.25

26 [1+x2y? ] 2
2 1+ ()"
b, = EP 2.2.26

2 2#[1+x2+qz]

aaﬂ 2¢ - X

_ y -
z N+ i+ @,2.2.27
Ix y 1+x"~r\11' |+X2+qa' ! 1+x"+1’ 2
%, . 33'—' s 0 o 2.2.28
5x ‘ﬁq
3.&.1 2 ) X - " _
* = ht —— %+ 53 .
Y 1’l+x"+\’: ! l+x2'+\i" 1 1+x7'+\jz' 27 2.2.29
2
oR Ak ok 2,2.30

— R - 'a'_ - a
ox Zf[_l+lz+|izl§. ‘ 1{[1-},8‘-;(‘]%. 2’

2.19




oh Xy 1+x?

- 2 %i EL‘— =
dy 25[1+x%+y?) 28 [ 1 +y

It should be observed that the x, y parameters are

7-]% a"- ) 2.2.31

non-orthogonal ( a4, # 0) but are conjugate (b12 = 0).

There is one other geometrical property of the paraboloid
which is of interest. The curve formed by the intersection of the
paraboloid and the plane 31'.l is the same as the generating parabola

(see figure 2.2.3). This can be demonstrated

i
NS
L4
~ =
y® e
S w
l E 75|
3 4 | a
o [
o~ &‘._ a
b2y »z Nh
~ ~E
b Y :3‘29 _h
"
‘ s ]
Y y -

|
|
|

°
>,
_/ =
“a,
o —
y'=2 y'=o y'= L

Figure 2,2.3
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as follows:

The generating parabola (see equation 2.1.1) is

"3 ) -
z ——— 4 sl oo 2
45 ’
At \1'=o ,
r- ‘12 2.2.33

and hence the intersection of the paraboloid and the plane \1’- 0 has

the representation

(° Y ) (‘11)2 2.2.3L
The slope of the curve is
“‘13(°"52) y?
dy* T 2,2.35
At 3’: L,
Feqy(L)?+ (y?)? 2.2.36

and hence the intersection of the paraboloid and the plane q’u& is

represented by

2.21



2 22
lj3(1’92)“ (L) "(y) .

4_[ 2.2,37

2
The apex of this curve is displaced from the ’1 lj plane by an amount

2
\13 (£,0) - _—(:f) 2.2.38

and hence if we use the tangent plane at the apex as a reference, the

curve is represented by the formula

2y 2
\’3(1)12)-\,3(!,,0)' £:—‘F)—- M 2.2.39

This is the same as formula 2.2.34. Furthermore the slope of the curve

dy’(L,9%) 3

d"z 2% 2.2,00

is the same as that given by equation 2.2.35. Thus, we have shown that
1
the curve of the surface along \j sl is precisely the generating

parabola displaced by an amount 113([, ’a).

2,22



2.3 GEOMETRY OF THE SHELL: POLAR PARAMETERS

The location of a point within the shell structure will
be specified by three parameters, two of which lie on the middle surface
while the third is oriented along the normal to the middle surface.

These parameteirs are denoted by Y » 8 yand ; respectively and are shown

in figure 2.3.1.

MIDDLE
- SURFACE

(f = 0)

y Figure 2.3.1

2.23



We see from figure 2.3.1 that point o is on the middle surface and that

p which is not on the middle surface has the position vector

7({,0,;) = ?o(y,g)-rlﬁ ’ 2.3.1

At point p, the base vectors g m 8Fe

q = ..a_;_. - _5__ a
9' ar s (] R\ O.' ? 2.3.2
=, dF -

‘jz"—a-a—'(“iz_)a-z ’ 2.3.3
- Y .

3" 32 =n 2.3.4

where R‘, Rl are the principal radii of curvature associated with the

middle surface (see equations 2.1.26 and 2.1.27) of the paraboloid, and
a.‘ , 5.2 are the base vectors of the middle surface, (see equations 2.1.8
and 2.1.9).

The non-zero components of the covariant fundamental

2.2)1



tensor are

s - z 2 s -
w (! 'é;) “i {l 2501+ ] %

Jz4(4)‘[1+(r)‘] \

2.3.5
L 4 2 2, 12
%7 (" %) u {l 2+[r+(r)‘]’z) i
2.3.6
=1 2.3.7

33

and the determinant g has the value

9= (1- £ (1- &

)1
Ry Ry Ui %2z

BN REIR RO TR

{r e [ i <o

2.3.8

We also 1list for future use the associated contravariant

quantities in terms of the middle surface parameters.

21 oy a
= i __5__ ) 2.3.9
ay (! —;) (-2
jt. —22 6
: T { ’ 2.3.10

2.25
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2.3.11

2 03012

2.3.13

2.3.1k

To complete the picture, the Christoffel symbols of the

second kind are tabulated for the space occupied by the shell structure.

{l'l}= -l:{r)_"

2,26

2.3.15

2.3.16

2.3.17



{é}={$}a-h-’)m

{223} - (1-;‘;) Rz

(1} - 4t )

" R

{,}= 4(£)2(¥)? (4-L)

22 R Rz

{aof={if-{a)~fes} = (s} - {s} -

2,27

2.3.18

2.3.19

2.3.20

2.3.21
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2.l GEOMETRY OF THE SHELI.: CARTESIAN PARAMETERS
We will proceed as in section 2.3 which describes the
geometry of the shell in terms of polar parameters. The position vector

to a point with coordinates x, y, € is represented by

F(x, Y)1)=Fo (X'Y)"’gﬁ- 2.Lh.1

At point p, the base vectors are

q S—a;F—-: - 1+Yz a - xy )‘ 2ob02
~ _or ( |+ X2 \ - ( Xy ) -
=T—=(1- a, - 2.k,
I oy ! 2e(14x2+y2)¥2/ 2 \2k(14XZ4y2) %2 Qs ’
g, = o8 2.h.L

938&—:".

The remaining geometrical properties can be calculated
but will not be tabulated since it is evident the non-orthogonal nature

of the x, y coordinates will lead to rather unwieldly expressions.
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IIT ANALYSIS OF DEFORMATION
3.1 THE STRAIN TENSOR

The square of the line-element, ds, in the undeformed
structure of the shell will be written as

(ds)2 =g, dx™ dx" 3.1.1

where 8mn is the fundamental metric covariant tensor of the space
occupied by .the undeformed structure and xl, x2, x3 are the curvilinear
coordinates which locate a specific point in the undeformed structure.
We will also use xl, x2, x3, as parameters to locate points in the de-
formed structure and hence the square of the line-element, dS, in the

deformed structure will be written as

(ds)2 = Gmp dx™d" 3.1.2

where Gmn is the fundamental metric covariant tensor of the deformed

structure.

3.1




The state of strain is characterized by the difference of

the square of the line-elements and will be written as

(ds)z-(ds)2=2 Yen dx™ dx" 3.1.3

where it can be observed from an examination of equations 3.1.1 and

3.1.2 that
{

The seccnd order covariant tensor, Fm, defined by
equation 3.1.3 is the strain tensor. Since equation 3,1.3 is written
in terms of the Lagrangian coordinates, i.e., the coordinates of the
undeformed body, the strain tensor, ¥ mn’ is sometimes referred to as
the Lagrangian strain tensor.

The metric tensor, G '’ of the deformed structure is re-
lated to the metric tensor of the undeformed structure displacement

vector, V .

3.2



Let r be the position vector to a point, p, in the
undeformed body and R be the position vector to P, the point which p

occupies after deformation., Then
Rer+v 3.1.5

and the base vectors of the deformed structure are given by
3R

Z 3R __F LoV _g
Gm axm axm +3xm = 9m +

IV

axm [ 3.1.6

It is easily verified that the components of the strain

tensor can be calculated from the vector equation

3.1.7

- dv - v oV v
mn * %(gm'-);’—'-'+9“. éx"‘+ YL éx“) )

3.3



3.2 THE COMPONENTS OF LARGE STRAIN

In this section we will specialize the results of the
preceding section to a coordinate system which is more suited to the
theory of shells than are the general curvilinear coordinates x", We
will designate these to be E', E2, and T at this stage of the
analysis. In the later sectlons E' and Ez will take on the roles of 7
and @ in the case of the polar parameters (see section 2.L).

The displacement vector, v , Will be specified in terms
of components aligned with respect to the base vectors, 5“ , of the
undeformed middle surface and the normal, h , to the undeformed middle

surface., We express this as

v (ghe2e)=vo(elest) o v vi(glede) 5. 321

The six components of the covariant strain tensor in the shell coordinates

(see equation 3.1.7) are determined by the following vector equations:

3.4



Az 3V - 3% 3V . o%
%o =2 (9“ A T3 5w T eE aaﬂ)

A ls . 2V =, ¥V v , OV
Va3 * 3 (9.;' 2T +n ded + 2T  a3e*

- 9 T 9
Yag=he 2ot 4 22

<t
<t
wie
d|<l

')
vt

3.2,2

302.3

3.2.4

Let us write out in explicit form the six components of the strain

tensor if the lines of curvature are utilized as the coordinates on

the middle surface of the undeformed shell.

Iy )(1 &7/

1 v a, v!
+-2-{ (v,', -R—.) a,+ (v,, v )022+( "2" +

v3 14
‘22- (V,zz— _R;—) (1"&:) Q39

vl 2 _v3\2 g2 V2
+'2"{(an V:z)ali + (V’Z Rz) 0zz + ( Rz

3.5

a2
3v3)}
aal ]

3.2.5

av3 3.2.6
MY }’



3.2.7
L i_) ayv' dv?
Yis = 2{(3§)(1— R/ 9n* ::g' 3E"
r-\a v3 av? ( 2
+ (a (v,’,-—")a“+( ot ) V’i)azz
av3) [a,V! 3V3)
+( bﬁ)( R, 38! i
. 3.2.8
(A (8 azav? = 3v®
Y233 (bt)(i-Rz)an R 3E2
v2 2 V3 av! 1
+ (§5) (w37 oz (58] (i) e
dv3) faxv bv3>}
+(é£)(ﬂz er/ )
3.2.9
ovi 1 [av' av! av® dv? dv3\2
¥33°3¢ * E‘{T—f Gt 3T OF “22"( ar) ’
3.2.10

It should be observed that none of the usual restrictions

of smallness, thinness and linearity have as yet been applied.
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3.3 THE COMPONENTS OF INFINITESIMAL STRAIN FOR THIN SHELLS

The thinness of the shell is specified by the ratio of
its thickness to the smallest radius of curvature of its middle surface.
If we let h be the thickness of the shell, then "thinness" can be ex-

pressed as

h h
Tg'_’% << —?SCST 3.3.1

Hence, the term ( 1- Ri“# ), which appears in each of the expressions
derived in the previous section, will be replaced by 1 wherever it
appears,

The infinitesimal nature of the strains means that the

elongations

E,,=‘V1+2—x“-'-‘- -1 (no $um on n) 3.3.2

9nn

and the changes in angles Eetween directions Em and En

’\fgmrﬂ gnn ( "')( En) 3'3'3

3.7



are not only small but are infinitesimal. If the strains are small, then

¥nn
En ™ "9, ° 3.3.4

2¥mn

Sin ¢mn =~ ¢mn i \/’5———9—— . 3.3.5
mm Jnan

The added restriction to infinitesimal strain enables us to neglect the
non-linear terms in the strain-displacement relations. In addition to
these simplifications, let us introduce the assumption that points lying

along the normal to the undeformed shell remain on a straight line in

the deformed shell. This is expressed as

V(€62 ¢)um () Ew S (2)E0). s

A companion assumption is one which states that v3 , the
displacement normal to the surface, is a function only of & and £2 ,

i.e.,

vi(g,g0) = w(ehe?) . 3.3.7

3.8



We will use €pm to denote the infinitesimal strain

tensor, 1i.e.,

€Eam = ¥om 3.3.8

The strain-digplacement relations for the case of a thin

shell and infinitesimal strain are as follows:

1 2 2 1
¥, = (u,, 'b:w) a,+ (U = by w)a,+ C(w,y ay+ @) azz), 3.3.9

[ 2
Y22 (":z'bzw)an"’("»az -b, W) “zz“;(‘*’:z acz*“’fz 022) ’

3.3.10
- ot 2 2
X’z 2{(“,2'sz)a“+(u,z’sz)Q|2
1 { 2 2
+(“rl'blw) at+ (un - b, W)azz
Wyy O+ Ww,,%2+w,, 9 + W, qzz) ) 3.3.11

¥p3= i— {w' Gyt W2ag+u'b,+ Ulbyo+ :a—wz‘“ E(w'bu*wsbzz)}a 3.3.12

9
377 {w'q.,+ wa,+u'by+uiby,+ 72—:— + 3 w'by+ w?b z,)} . 3.3.13

3.9



There are five generalized displacements in equations 3,3.9 to 3.3.13.
These are u', u?, w , @ ! and w2 The first three are directly pro-
portional to displacements of the middle surface whereas the last two are
proportional to the angle of rotation which the normal to the deformed
surface undergoes during deformation., These latter two (w' andw?) are
a first approxdmation to the effect of transverse shearing deformations.
In a large majority of problems, the effects of transverse

shearing deformations are negligible and we can place a further restric-
tion on the distortions assuming that

iz = 0, 3.3.14

T3 = 0. 3.3.15

This permits us to eliminate @, and w, since equations 3.3.12 and 3.3.13

can now be solved to yield

w' ='b‘! U‘ - bz‘ Uz —~ Wm0 3.3.16

3.10




= - oW
w? = blzui—bzz uz - agl ’ 3.3.17

It is observed that the strain-displacement relations
‘consist of a term which represents the stretching of the middle surface
and an additional term due to bending of the middle surface. Hence we

write

U“ﬁ (att Ez’ C) = b'acz A(i:gz)"’ tkaﬂ (ﬁ‘, Ez) 3.3.18

where it can be shown that

0 !
Yeg =7 (Vs g + Ug,q = 2bug W), 3.3.19

1
heg =3 (W 5+ Wg a)- 3.3.20

o
We will refer to JaL A as the strain tensor of the middle surface and to

Jl‘( as the strain-curvature tensor of the middle surface.

A
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3.4 STRAIN-DISPLACEMENT RELATIONS: POLAR PARAMETERS

In this section we will apply the formulae of section 3.3
to the paraboloid as described by the polar parameters, r and € , which
are also the lines of curvature. The results in terms of the tensor

components are as follows:

=gt - e By 301
1t PYS !+(J)2 W ’ olls
50 . du, .3 " - 2f(¥)2
22 ) 1 ) A2
W T gy >
0o 1 Juy du 2
B - + -—_
272 { 36 ar ¥ “2} 3.3
TR S
- awg ¥
’kZZ Y + 1+ (1) 2 W,y 3.l.5



dw dwy 2
1 ! L
Ry, = 'i{ Y t 37 Y wZ}o 3.4.6

w x - L u'_—blv_-
fiv(s)2 oY ° 3.4.7
“z Vi (0)2 T oe e

Let us introduce at this stage the physical components of the strain
tensors into the strain-displacement relations., Also, we will switch

to the r,e notation for the components of strain and displacements.

We note that

- ¥y

er = 6“ - a ’ 3-"-9

1]

_ 322

€g=€22° 79, 3.1.10

_ 82
€Erg = €y =

No.a.. | 3...11
anyaz2
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We will also at this stage separate the strain into two
portions, one of which is the strain of the middle surface and the other

which is proportional to 7 . To this purpose we write

€ =€ +tk,, 3.4.12
(-]
€g=€ + LKy 3.4.13
(4
Gre =Era + f Kl"e . 3-).1-1,4

[
Before we calculate &, ﬁo and K g » let us introduce the
physical components of ue and w* . These are given for the case of the

orthogonal coordinates by

u: = G" U' = '\/;" u, ’ 3.11.15
W =Vag u? =Val u, 3.1.16

3.



wy=Va, w'=va" w,, 3.4.17

[} r— /=37

0 °© o0 o
where Up, Ug,Wy and Wg denote the physical components of displacement
and rotation.
The pertinent strain-displacement relations for the

paraboloidal shell described by polar parameters are as follows:

°
o 1 dup w
e 2F V1+¥2 ar 2¢ [v+22]%2 0 3.k.19
€ = — 5UG° + Uy’ - w )
2Ry 90 appifiaye ervhvy? 3.L.20
4]
€’ = 1 dup up . ou’
R LV /PP L N L 2¢y 46 3.L.2
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PRI NI
r Zf[H- 52]3/2 v+ Yy? o ! 3.h.22
w0’ = - U; A Iw
& " 2viryz 2y 36 7 3.1.23
K 1 dwy
Y ZiviegE  of 3.2
. wr R dwg’
Ko™ 2rywieye ~ 268 26 3.0.25
o o ]
{ dwg Wy 1 Wy

. + :
Kro™ Zevigs or  zeavisre | 21 06 3.11.26

3.5 STRAIN-DISPLACEMENT RELATIONS: CARTESIAN PARAMETERS
We will summarize in this section the strain-displacement
relations for the paraboloid as described by the Cartesian parameters

x and y.
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, ! ! 2 '
o= (35 + o) 4° 1w (3 ) 44%xy

+(x)2+(y) ax 1+ (x)2+(y)
_ 2fw
A1+ ()24 ()2 3.5.1
o _[du* yu? 2 ,1 /7 du’ xu? .
- 2fw

A1+ (x)2+(y)? ? 3.5.2

3 u
xic; .'2_{( b; +I+(X>)(:+(\/)7')4f [‘*("’] (ax '+(x\;2+(y)2 )4*2\_‘**()1) ]

ou' Xu' du? yu?
5 + )24 (y)2 T Ry T )T ()2 48 xy
= 2by, w},
3.5.3
_[ ' xw! \ or. dew? y ' 2
k”-( O + 1+(x)z*(Y)Z/4f [1‘?‘(7\)2-]*'( 3 +1\-(X)"+(Y)l)4f Xy,B.S.h

bwz y@? ) 4. (0w xw? 2
kp; = ( 1+(x)2+(y)2)4f 00T+ Sy T “'(")2*(‘/)1)4f R

dw! X w? 2 2], [ dw? yw!
k12=l§{( b)’ T "f'(K)z+(y)2)4f [i+(X) ]+( dX +1+(x)2+(\/)2)4fz[1+(Y)z]

dw? xw? L dwt yw? 2 }
*( 3 R (k) (y)E | oy 1*(X)=+(y)2)4* XY)s

3.5.6



o L1+y)2] _ Xyu*
2e[1+(x)24(y)2]32 28014 ()24 (y)2 ]2 3.5.7
1+(y)? dw _ Xy dw

DA T )?] X AFE[1+ (0% (y)T oy

14 02]u? . Xyu!
W =T 2 IR (x) 21 (y)2 ]2 241+ (x) 24 (y)2] Y2
5.8
14 (x)2 bw_ XYy ow 35

T4 ()24 (y)2] Oy 4fZ[t+(x)2+(y)Z] ox

In this case of the rectangular parameters, the physical

components of the displacements will be taken with respect to the

covariant base vectors, aa . Thus we will use

uf = Va, u'= 28V1¥(x)2 U,

3.5.9
uz = Aay, u?= 2f Vit (y)® u?,

3.5.10
wi =Vay w'=2fViv(x)* W', 5

3.5.11

3.18



[ )
W, = Q22 w2= 2+ 1+(\/)2 w? 3.5.12
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IV ANALYSIS OF STRESSES

k.1 THE STRESS TENSOR

The stress tensor in three-dimensional space is defined on

the basis of the equilibrium of a tetrahedron which is carved out of the

deformed body (see figure L.l.1).

7~ funit normal to
~H (focc Py P, Py )

Figure hL.1l.1
In the limit, three deges of the tetrahedron can be considered to be
formed by the vectors O dx', U,dx, and G3dx3, where the J_ are
the base vectors of the deformed body. The fourth face of the tetra-
hedron is located by an outwardly directed unit normal wvector, F. s

which can be expressed as

Gm g/“'m G . ho]-gl

L.



The action of the rest of the body on the tetrahedron is represented by

the stress vectors shown in figure L.1.2:

1 P3

‘O‘.

c
Figure L.1.2

In this figure we have the following:

o = gtress vector (force per unit area) acting on face dA
am = gtress vector (force per unit area) acting on dAm
dA = one-half of the area of face P,P,P,

dA ) coordinate surface
1 = one-half of the area of face P P2P3 (g1 - constant )

. coordinate surfacec
dA, one-half of the area of face P PP, ( €2 = constant )

] coordinate surface
dAz one half of the area of face P P1P2 ( 23 = constant )

The equilibrium of the tetrahedron requires

SdA-5™MdAm =0 h.1.2

L.2



and since

dAm = npy AVa™T dA (No Sum) L.1.3

the equilibrium equation becomes
- 3 _
c=% 3" Ve™ n, Lol
m:

This last relation forms the basis on which the stress

tensor is defined. We write
~m 3 mn ~
cTVEMM= nz” T Gn (No Sum on m) L.1.5

It can be shown that the stress tensor is symmetric:

TN = Thm, L.1.6

L.2 THE FORCE AND MOMENT RESULTANTS

Generally, a shell structure is one in which dimensions

]
in the two coordinate directions & and 32 are large compared to the

L.3



dimension in direction 'C which is normal to 3' and Ez . Additionally,
the bounding surfaces $=1% .'?2.. are usually acted upon by loads of a
magnitude which cause the surface stresses at the bounding surfact to

be negligibly small in comparison to the internal stresses. It thus
becomes more convenlent to work with stress resultants which are the
stress effects integrated across the thickness of the shell. This
procedure, it may be recalled, is one which is used in the theory of

beams and plates.

The stress resultants are defined relative to a shell

volume element which extends over the total thickness of the shell (see

figure L.2.1).

L.



h
" 2
3-1 - _ "62 T
) h
/ 2
¢ /<SURFACE €2« CONSTANT

SURFACE €'= CONSTANT
Figure L4.2.1
There are shown in figure L4.2.1 the stress vectors a! and o2 which

act on elements of area '\/Gl2 d gzd g*and '\/G" de'd *g* respectively

(see figure L.2.2).

gl
/Gy d¢!

- dezjﬁ—‘ VA, d¢'

VG d€°—

Figure 4.2.2
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The stress vectors, which are a funoction of f* s are replaced by
stress resultants. Thus, figure L.2.1 which shows the stress vectors
and the shell volume element is replaced by figure L.2.3 which shows

the middle surface of the volume element and the stress resultants.

VS~
fa d(?

P

[N
&
2

¢

DEFORMED MIDDLE SURFACE

Zl

Figure 4.2.3
There are two kinds of stress resultants: L' and L2
which will be called force resultants; and m' and e which are called
moment resultants. It will be shown that the moment resultants are

surface vectors, i.e., they lie in the tangent plane at point p. The

force resultants, however, are space vectors.

The definitions for the stress resultants are in reality

equations which characterize the statiocal equivalence of the stress

L.6



resultants to the satress wvectors:

Wit

-1 ——

£'Aay de? “/h': &'VG,, dg?de*, 4.2.1

-9 hw

£ vay de' =/hf &V6, dg' dg*, h.2.2

Y

A h - 1 2, .4

mAyAl, d&zt/-:* 'Nx & VGudg dg . 4.2.3
w*

mZVA,, de' i/‘h " Nx5%VG, de'dtg* L2
2

It is useful at this stage to introduce the stress tensor by means of the

equations (see equation 4.1.5),

&'=—:§ [t"6,+7% G, + T3 N], L.2.5
- 1 = = -
0—2 = [TZI G‘+T22 GZ+ TZ? N]. 4.2.6

We will define the force resultant tensor and the moment

h.?



resultant tensor by means of the equations

Z'VAT = "A+ 12 R, + q' N, k.2.7
22Va2 = g R+ L2 A, + g2 N, h.2.8

m' VA" =VA m AZ- VA m2A', 1.2.9

—-— _2 A
m2 Va2 = «/A m2t A -’\/Z m22 A%, L.2.10

It can be shown that the quantities £°% and m*3 are
surface tensors of the contravariant type.

If equations L.2.5 and L.2.6 are substituted into
equations l.2.1 to L.2.4 and the results compared with equation L.2.7
to L.2.10, there will emerge the following relations for the stress and

moment resultant tensors:

L.8




h‘
z"ff; V& [T(1-¢*B)- 70 8} at?,
2

L.2.11
2_*
Evzt_/h‘: %[_T";*af+'z"2(l-§*bzz)] dt*, 4.2.12
Tz
h
%= h:f' @[72‘(|—§*B;)-T" C*B;] at*, L.2.13
-2
hw
2
*1/?[ 722 ¥ B! P+ T (1-¢*B )]dC* L2.1h
h* *
.
q' = h2 % T3 d6", L.2.15
~z
2 "3'* 23 *
-7
hk
- 2 " ek 1Y _ 12 ® ot * *
S L (o) R S L LR
-7
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h
m?sfE AR T el T (o0t 8]) ] e et o

.’l*
m*'= 2 S (1-¢"8)) -T2 0By g ack, b.2.19
dh .
b.* 2M pk o2 22 *o2 * X
met =2 s [-T e+ T (1~f Bg)]f dt". k2.2
Tz

Note that the equations L4.2.11 to L.2.16, which may be
termed the exact definitions, define tensors which are not symmetric.

If the deformed shape of the shell is assumed to be such
that the radius of curvature of the deformed middle surface is still
large in comparison to the thickness, h* , then the terms t*B: will
be small in comparison to unity and hence can be neglected in equations
L.2.11 to L.2.20. Additionally, there will be a negligible difference
between the length of h and h* for the case of small strain, With these

restrictions, the components of the force-resultant and moment resultant

.10



tensors assume the simpler forms shown below:

s
£ [); Td T, L.2.21
2
h ! 4.2.22
-2

h

A L.2.23
2
b
q' T/'hz T‘s d g [ ’Jo2.2h
3
5 3
q2= hz T2d¢, _ L.2.25
"2
L}
m"a hz TWCd¢, L.2.26
T2
L1
m?2=m2! ==.[_.;Z T*¢d ¢, h.2.27

holl



h
22=[ % 22
m »[J:_T td¢t. L.2.28
2

It should be observed that the tensors m""f‘s and £ «3
are symmetrical tensors for a thin shell.
Li.3 THE EQUATIONS OF EQUILIBRIUM
It will be found convenient to introduce the quasi-force

vectors L defined by setting

- 2 o 2
L dE° L VAq d&7, b3l

tzd E""EZ‘VA” dE' .
L.3.2

-1 -2
The quantities Ld&% andL'd €' have the dimensions of a force, and by

introducing equations L.2.7 and L4.2.8, it is seen that

1%=va {lﬂ Ka‘l- q_‘fﬁ}. L.3.3

L.12



— a
Similarly, we introduce the quasi-moment vectors M by

setting
M'dg2=m'yAg, dE?, b.3.l
M de'=m? Va, dg' 4.3.5

By substituting equations L.2.9 and L4.2.10, there results

where Eaﬁ is the covariant permutation surface tensor.

The force equilibrium of the shell element of volume can
be obtained by examining figure L.3.1, which sketches the force vectors

which are acting at the deformed middle surface.

L.13



T24¢! ¢
Figure L4.3.1

The vector equation of equilibrium is simply

-1 -2 - }
(;—E—,+—§1'E—1+F) dg dg* =0 4.3.7

Fdg'de’
whereF is a body force vector with components given by

F=va (F*A, + F3 N), 4.3.8

It is easily demonstrated that equation }.3.7 has the
following form if the stress resultant tensor is introduced by means

of equation L.3.3.

L.y




6% - 085 + Fe] VA A,

+[q'3|‘6 + 05 By + F’] VA N= 0.
L.3.9

The vertical slash before a subscript indicates surface covariant
differentiation in the metric of the deformed middle surface,

The moment equilibrium of the shell element of volume
requires the examination of figure L.3.2, which sketches the moment

vectors acting on the deformed middle surface, and also figure L.3.1.

- k4
e2 wiae' + g%%-df'dfz

=1 .2 am' .2 .1
MdE“+2="-4d
o€ 13 14

Figure L.3.2
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The moments depicted in figure l;.3.2 are moments of the
stresses about the '&' and 'E,z axes. In addition, there are moments
about the t* axis caused by the force vectors shown in figure l.3.1.

By properly summing up all of these moments, the following vector equation

of moment equilibrium is obtained:

— ‘ -
<——W +Aq xn."‘) de' dg? =o.

YA 1.3.10

There are terms of higher order such as that contributed by the body
force f':d g‘ dEz which have been neglected.
By introducing equation l.3.6, the moment equilibrium

equation becomes

-T -

[m“ala“{o—] €ct VA A +[B,: m""’%—l'ﬂ]&ﬂ YA N=o0. L.3.11
-1

The scalar ecuations of force equilibrium in the A ,

-2 -
A , and N directions are obtained by forming the scalar product

of equation L.3.9 with the contravariant base vectors A , A , and N

k.16



respectively:

Eﬁa‘ﬁ ) qﬁ B; +F%=0, L.3.12

q3|ﬁ+ 1% Byg+ F3=0, 4.3.13

The scalar equations of moment equilibrium in the Z«, ,

A, directions are obtained by forming the scalar product of equation

L.3.11 with the covariant base vectors Z, , and A,

(m“"'l“- qo')sa.r 2 0. L.3.14

It can be shown that the scalar equation of moment

equilibrium about the N direction, .
Y
(Ba m*%+ 1”) €oy=0 L.3.15

is identically satisfied because the strain tensor, T™", is symmetric.

L.17



4.4 THE EQUILIBRIUM EQUATIONS FOR INFINITESIMAL STRAINS

If the strains are infinitesimal, then insofar as the

stresses are concerned, the geometry of the deformed shell is indis-

tinguishable from the geometry of the undeformed shell, Thus, the first

and second fundamental tensors of the deformed middle surface appearing

in the equilibrium equations of section L.3 can be replaced by the

similar tensors of the undeformed middle surface. The equations of

equilibrium under these circumstances will be written as follows:

£y -q%bg F = 0, Lol
qfﬁ + 2°% b, + F3=0, b.b.2
miy - q7=0. b.b.3

The comma now signifies surface corvariant differentiation with respect

to the metric tensor of the undeformed middle surface.
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Lk.h.1 POLAR PARAMETERS

The equations L.lk.l, L.L.2, and L.4.3 assume the following

forms if the polar parameters § and © of section 2.1 are used.

Jl" él" 2) l. " ‘__L 22 _ q‘ ‘"
oY + 0 +[|+(8)2+ ,] 2" (,H,,,)l mzi-F =0, L.4.1.1
.aL'z ‘"22 3 § y\2 _ q_' +F2:0 \ \

dq' | 9q° ¥ 17 2f " 2032 0m (3

gy —<f 20
oY MY [‘+(l’)’- + x]q*' UBE 4 +‘[|+(t)" \/zl R 1T 1O B
ém" 6m2' r 2 1 T ¥ 22 1 _
Y2REY) "[Mnﬁ"?]m TR ™ C1 =0 bb2.l
am? gm? [3+ ] m-qtm 0
FY; + FY) + 3 + 1+(¥)2 m*©-q L.b.1.5

The physical components of the force and moment resultant
tensors are, since the polar parameters are also the lines of curvature,

given by

hol9



NpE Ny = L'a, = a2 [1+ (0)2] 2",

NQE N22= 222022'-‘ fz(x)zlzz,

Npg™ Ny = Ny=2" Vay az, = 413 '[“(')z]%l'z’

M.EMu=m"a,= ar2[1+ (1] m",

MOE Moo = m"'au-'-' 4fz(X)2 m’z,

M, o= My = My = 482 ¥ [1+(12] 2 m*2,

Q= Q=Vay q'z 24VFITE q,

k.20

L.h.1.6

L.h.1.7

L.hk.1.8

L.k.1.9

h.h.1.10

h.h.2.11

L.b4.1.12



Qe=Qz=Vaz; q%=2f¥q>. b.b.1.13

If the physical components are used, the equatiods of

equilibrium can be arranged into the following form:

ON
37+ VIR 255+ Ny - T e 272, = 0,
b.b.1.1k

aNra X 2 ___e + 2” - ’Q + 24) V + x, Pe = O’
a hoholcls

30 - dQ ¥
IS+ V102 S5 T Net SN+ Q208 Ve T p = 0,

L.L.2.26
3Mr éM
Y +Al1+(1)2 =y +M,. Mg -2£¥ V1+()2Qr = 0,
b.b.2.27
IM,p
'T +¥1+(9)? ae *2Mg- 207 Y1+ (N2 Qg = 0
L.h.1.18

where the body force intensity vector (see equation L.3.8) is given by

k.21



- 3, a,
Pep ——+p, —— + n.
Pry¥a, = Pe+ay Pn
L.L.1.19
a, Q-
It should be observed that and = are unit
Nay RS

vectors.

L.L.2 CARTESIAN PARAMETERS
The equations L.L.1, L.b.2, and L.L.3 assume the following

forms if the cartesian parameters x and y of section 2.3 are used.

Z" 22‘+32f4 « 2"y 1684 o'y Jet? 1f4 22 8auf? q+ ¢ 392024 £,
a

a Na Na
bX Y a ava ava L.li.2.1
2 22 306 22 4 21 4 §3 8a,f3
At g M 0 S - B o
L.lh.2.2
q' . 3% jett 16+ 2, 8F3 pu, 853 poz 3.4
+——+ Xq'+ = v+ rg AT FTE0,
d @ va L.b.2.3
" 2 a 4 16§ 4
83(:'* bsn +32af xm'y 1Gaf ym'2+—3—xmu"q'=0'
Y L.h.2.4
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1 22 4 4
6:; +6v:y + 32::4 m22 + ‘6; xm”-ri% ym'-q? = 0.

h.h.2.5‘
It should be remembered that £ is the focal length and hence fh and
£3 represent powers of f. The components of q, ) are detailed in
section 2.3 as is a.
The physical components of the force and moment resultant

tensors are given by

Ng= Ny = VB /28 LY, R
. - 12
Nxy = Niz= va £, RN

Ny = Ng, = +/ 32 L Ve, L.b.2.8

Q=Q: ® Van q' s L.b.2.9
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Q=2 =vay 9
MX=M”=\/; \/_2_1_;—2_ 111,
Mxy =M= Ya m',
M‘/=Mzz="\/; ‘\/Z-z—:_zzz,
Px=p,=W/°—u Fiy
Py=Pz=@ F2,

P¢=ps =F

L.oL

h.h.?.lﬁ

L.h.2.1

L.h.2.12

L.h.2.13

L.b.2.1)

Lh.b.2.15

L.h.2.16



The equations of equilibrium in terms of the physical

components of the force and moment resultants are listed below:

INy +[lbf4_ 4;2] XNy + A3 MNay | Gu defd
ox a Qy d3  dy Q2 Q Y

84/0;, 43 8V %y 842f3 L.
e ————— T —————————— foed ’ olile 91
r; Q, + s ons Qy+ \/aﬁ'u py= 0 L.b.2.17

4 2 4
Ny +[16f M]yN + .02 ‘)Nﬁx 822 _16f N,

dy Q Q2 Ay ox a“ a
_ 8N0y, 3 8V°'z Gy t3 ‘/3- 4.2.18
a Qy+ a a” Qx+ -q—" pygo’ holo .

1 AQ. 1 ')Ql+ XQ.X 16‘f4'[1+ [v] ]
Nay X Vag: dy 4a, @ 4f *ay

, YQ, 4vefé a 8&3 LTy ‘/__"_
+‘*l°22 a [1- 4f2a22] [ 11 Vg, N2z ]+P§ ohhzlg

M 16f4 4f2 an  OMyy Gy [6f¢ . 42
X +[ - XMX+ AL y+ L XMY }é:;ox= O, h.h.2.20

X a Ay d2 dy G2 a
My, [16{4 af ] 3Mxy 22 fef4
+ ,\/ M
ay (7] G“ “ [»] y X
a = 0. 4.2.21
= QY 0 L.k

L.2s



'V THE STRESS~STRAIN RELATIONS
5.1 OGENERAL RELATIONS FOR ISOTROPIC MATERIALS
The stress-strain relations for an isotropic material

and general curvilinear coordinates are given by the tensor equation

T "1"“{9'“k g™+ gmlgnk 4 ‘,—_22% 9m" 9,‘2} Spy 5.1.1

where
= —E = Shear Modulu 5.1.2
M Z(1+7) e o s, 1.
E = Young's Modulus, 5.1.3
2 = Poisson's Ratio. S.1.h

In the case of a thin shell, the Kirchhoff assumption
leads to the vanishing of ¥33 and to the neglect of T3% ., Also, the
assumption of negligible transverse shear strain voids the use of two of
the six stress-strain relations. All these factors in conjunction with the

special properties of the shell coordinate system reduces equation 5.1.1

5.1



to the following:

aB . O*RIT
T { Yyr 5.1.5
where the elastic constants)*A?¥7 are given by

If equation 5.1.5 is substituted into the definitions for
the force and moment resultants (see equations 5.2,.21 - 5.2.28), there

will be obtained

L =h @ y2 5.1.7
ad = 02 papir )

In these latter two equations, the strain tensor'x,1- has been expressed
in terms of the strain tensor of the middle surface and the strain-

curvature of the middle surface (see equation 3.3.19). The stress-strain

5.2



relations in explicit form are listed as follows:

Eh
zif.m {a“a“b’;+a"a“31°1+[(1-y)q'2a‘2+ v q“a"] ‘Yzoz}, 5.1.9
2. Eh | 2 _uyo [1-v 4 0, 121.12,0
1" I-vz{a a 511"'[—2— a" an+——z—a a' ]‘nz‘*a 25214 5.1.10
Eh
222'm{[(‘ _y)q1zq|2+yqﬂazz] ‘"0.'. a|20228'°2 0220223 2}’ 5 1.11

en? .
mf= o 1a"a"k, +a a"lzn+[(1-z/)a'za”n/a“a“ }‘22}95.1.12

EhS v i
12 —=n__ 124 22 H- |2 12 k1
m™ = 2(-07) {a 0"kt [z a"a+ 3= a"a ]}‘12*0“ "‘21}95.1.13

m22= 0 v&){(' y)atz 'z*lla"a’z]k"m'za",&,zw”a"kz,_}, 51,10

5.2 POLAR PARAMETERS

The polar parameters, r and € , being orthogonal, yield

stress-strain relations which are much simplified. In tensor form these

5.3



are as follows:

Q“-——* {a“a" Yy +tza"a** ¥, }, 5.2.1

12 _

22 . _Eh o .
£2°°= 1-v2 {022 a? 522_'_ uauaz b’; ¢.2.3
m" = 12(1-2/2) {G"a",k"-}ya”azz ’kzz} 5.2.h
m'z‘-‘-—--—---Ehs {"” a'a?2 k, 5.2

12(1-v2) \T 2 } 2.5

m 12(1-22) 22tva’a 1|} . 5.2.

In these relations, the components of the contravariant metric tensor

are given by equations 2.1.21, 2.1.22, and 2.1.23. The stress-strain

relations, in the case of the orthogonal coordinates, assume especially

5.k



simple forms if expressed in terms of physical components.

Eh
Nr = 77,2 (6;?'*'2/590)1 5.2.7
Eh
Neo =722 ("”)6:9’ 5.2.8
Eh
Ng = 7-27 (€a°+ ”ero), 5.2.9
Eh
M= |2(1-y2) (Kf' + ”Kg)v 5.2.10
Eh®
Mpg = 12(1-22) ("'”) K.»g s 5.2.11
- __E—b.s——— K K
Me 12 (1-;/1) ( 9"’ v r)- 5.2.12

5.3 CARTESIAN PARAMETERS

The stress-strain relations to be used with the Cartesian

parameters take on rather imposing appearances.
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0= T Ty LY 0y ey 2) 0,

+ [(1-1/) x’y2+u(t+x’) (l+y’)]3;2} .
5.3.1

g% !-EBZ . ;5;4(1+’xz+y2){ (;Ly)(|+y )3’”1- [( )(H-x) 1+y2)+(U) ]712

- (xy) (1+x?) X:z},

5.3.2
J 2 1522 "ﬂ('ﬂ ey {(1y)xy2+y(l+y )(sz)] .
- (xy) (1+x?) ’n 1—(1+x2)2 Xu} ,
5.3.3
m". —Eh_ ! {(H- 2)2 k- xy (1 y?) k
120-22)  16f4 (14 xT4y2) Y ) ARwmxy (1Y
+ 1,' 2 .2 1) 1+ 2) L .
[( v) 2yt v+ x?) (14 y ] zz} .
3
m'? = 12(1Eh2/’) uwr"(‘l»«x‘»“/z { xy)(rty’) Ao
*[tzz)(‘*‘z)(‘+yz)+(Ltzl")XzY’]’*n'(’*YX'*xi))‘zz}v ss
3.
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3 { 2 2
"’22’12(Eruz " 1613 (1+xZey2) {[("”)" 4 *”(’*"z)(“‘yz)] ky

~(xy) (14 x2) kyy + (1+x2)? ‘.&29_] .
5.3.6

These equations look just as, if not more imposing, when

the physical components of the tensors are used.

My [r—”h_z][“ 1:2,(2,;2]%{6: V(HX‘TZWZ) 6"‘/
+,[I+“,;,u) (Hi(z;(:lfyz}] e°},

ny=[7_-E-h—J|:'*'1rx J {[ (1I+Z (i+x-;(?’r/ )] o)’
g= )\/mwm e ]} 5.3.8

N[l el e e

-"[l'f(Iz;y) (H't(l){l*yz)] 0},

5.3.7

5.3.9

5.7



Vo = Eh3 2,2 3/ XZ
x [_—)lzu-uz][‘*‘u—‘1+xz+yz]'z{'<*'m Kxy

. (1-v) x*y?
. Y
[1+ U T1+x2ty?) ] ”KY}

5.3.10

Mo - Ew’ 1, X2y2 13, (1+v)  x%y?*
xy [,2 -y-)][“t+x2+-y?-] {[“’u-v)(1+x2)(uy1)]K"Y

(1-
) [('—2-7) '\I(I+X)Z(1+y2) ] [€’°+ 6;]} )
5.3.11

v [—En® [, X2v2 V% xy
Y ['2("1!‘)][“' HX"”-\/"] 2{Ky-'\/1+x2+yl K.XY

(1-v) x?y?2
N Y
[H-‘ > (i+x1)(1+y1)]”KX}’

5.3.12
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The authors have detected the following errors in
Report 71G-1 (F. Y. Wan, Prof. J. Mar, "Distortions
and Stresses of Paraboloidal Surface Structures,

Part 1," 7 February 1962).

Kindly insert these pages into your copy of this

report .

Page 2.12 Equation 2.1.43 should bve

_a.ﬁ_:' - _1-.-_ Z - 61
a‘ —R' al &[1*(')1] -72

Page 2.12 Equation 2.1.44 should be

OR . _

1 a - - a2
90 R, * H1+(g)*) "

Page 2.28 Equation 2.4.4 should be

3= 35 =7

Page 3.1 Equation 3.1.2 should be
2
(dS) = G,.,m Jxm Ax”

Page 3.3 Equation 3.1.7 should be

Kmnzi (quf'"" + in'ﬁm + 9OV ._(21"),
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Page 3.5 Equation 3.2.6 should be

:."'(V)zz ) (]- )au

+%{(V, 2 V,z) Qg + (V)z-ﬁz) Qaat (a ¥

Uaa
— +
Rz

Page 3.9 Equation 3.3.9 should be

611 = (u:1 -b:W)Q" ""(U-,i' L:W)a,z-f f( 1

Wyg Qqq + Wy Uy,

Page 3.9 Equation 3.3.12 should be
1 2 1
615 = jz_'iw Qyp+w Ayt U b,; + uzbu +-é”‘

Page 3.11 Equation 3.3.17 should be

1
Wy = ‘l’n“-

b 2 Jdw
— u  c——
Page 3.16 Equation 3.4.22 should be

o o

W, = - - Y. - 1 dw
2 (1454 % 2 YIey2  d¥

Page 3.16 Equation 3.4.26 should be

K=YM’ dor 4+ 1 das .
re

LS

4f ¥ 06 4f Iy afy

Page 3.17 Equation 3.5.2 should be

2
¥, = (%y‘“ ﬁfﬁ) 4£* [10] (3— 1+<x>‘f<> 3y

_ 2f w

Y 1+(0) ey

dgz + g(ﬁ)1l?12 1'(02 L21

)

)
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Page 3.17 Equation 3.5.3% should be

b ” %&(‘3*;1 ' T+<T)T>—) 4] (o o) L 0]

2
( t)u XlL‘ t du’ + Y 1)4‘7""‘)’ -2 bﬂ.wj
dx 140> () dy 1+ 0% (y)
Page 4.1 Line 2, Paragraph 2, G, should ve G

1 2 j1 [Z
Page 4.6 Line 1, Paragraph 1, l and./ﬂ should be and

Page 4.7 Equation 4.2.2 should be
'2 h* 2 »
y Jg f J= ’VGn C‘Ei dg
Page 4.12 Equation L.3.1 should be

U oder = I, de?

Page 4.18 Equation 4.4.1 should be

,ﬁﬂl cl L + F°
Page 4.25 Equation 4.4.2.21 should be
4
oM, 1ef* _ ] M Ya, o Gz toft M
a9y [ an " i e
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Page 5.3 Equation 5.1.12 should be

" 5 "o 17 0 17 12 1n 22
m -12E(t‘-z/*)§o’a‘ nto a //1,,_+[(1'2i)o. a +%a a “2,,}

Page 5.4 Equation 5.2.6 should be
22 EhL3 22 22 1 22
m --T(’-_y—z){a_ [/ Au_+2}a & /A”Z
Page 5.5 Equation 5.2.10 should be

M a'__E_“J_<Kr,.yK9)

r 12(1-2%)
Page 5.6 Equation 5.3.5 should be

"-= Ehg 1 _( N
" T R0 T (exteyd) 1oyt Ay

o [ (52) (106009 (52) 'y s G158 s |
Page 5.7 Equation 5.3.6 should be

m,, = Eh3 . ] i - 2.2 2)( 14 vt
R0y | I (1) [(1 V)xty e (14x*) (1 y)] y»

= (xy)(1+x*) A’;,,, + (1+x3)* 4 zz}

Page 5.7 Equation 5.3.8 should be

3 )
= Ek 2.2 14V 2 2
N“Y [1—»4 [“11‘7{7#] {[“ (I'V)(mx‘);(%y’)J 6‘7
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